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RAMAN AND PHOTO-MODULATED REFLECTIVITY STUDIES OF ZnTe/lnAs 
SEMICONDUCTOR HETEROSTRUCTURE UNDER HYDROSTATIC PRESSURE 

Robert J. Thomas, Mark S. Boley, H. R. Chandrasekhar and Meera Chandrasekhar 
Department of Physics and Astronomy 

University of Missouri— Columbia 
Columbia MO 65211 

C. Parkst, A. K. Ramdast, J. Han*, M. Kobayashi* and R. L. Gunshor* 
tDepartment of Physics, School of Electrical Engineering 

Purdue University 
West Lafayette, IN 47907 

The photo-modulated reflectivity spectrum of a biaxially-strained pseudomorphic ZnTe epilayer, 
grown on an InAs epilayer by molecular beam epitaxy is studied as a function of applied hydrostatic 
pressure at 80K. With increasing hydrostatic compression, the biaxially compressive strain is 
progressively compensated by the pressure induced tensile strain. At approximately 55 kbars the epilayer 
becomes strain free, and is under a biaxial tension at higher pressures. The separation between the heavy 
hole and light hole signatures is superlinear in pressure, suggestive of a pressure dependent shear 
deformation potential constant for the valence and conduction bands. We also compare the pressure 
dependence of the Raman LO phonon of the ZnTe epilayer on InAs with that of a bulk ZnTe sample at 
13K. The pressure dependent strain is found to be linear. Accurate values of the first order strain 
derivatives of the LO-phonons and mode Grüneisen constants are obtained. 

It has been shown that ZnSe films grown 
pseudomorphically on GaAs exhibit pressure 
dependent strain effects through photomodulated 
reflectivity (PR)1, photoluminescence (PL)2 and 
Raman scattering3 studies under pressure. It was 
also shown that the tetragonal deformation 
potential b is either a function of strain or volume 
deformation.I'2 In this paper, we present a 
detailed photomodulated reflectivity (PR) and 
Raman study of a ZnTe epilayer grown on an 
InAs homoepitaxial epilayer. 

The thin film samples consisted of a 63 nm 
epilayer of ZnTe grown on the (001) surface of a 
1.5 (im thick InAs homoepitaxial epilayer on an 
InAs substrate by molecular beam epitaxy (MBE); 
bulk crystalline ZnTe was also studied. 
Experimental details are available elsewhere.1 

The built-in strains in the epilayer due to the 
lattice mismatch are characterized by 

: £xx — Eyy : as — ae 
. = -2£iZe, 

£xy — £yz — £zx — vJ 
(1) 

where as and ag are the lattice constants of the 
substrate and the epilayer, respectively, and q; are 
the elastic constants. The direction of growth of 
the epilayer is taken as the z-axis and e = exx = 
£yy is referred to as the biaxial strain. 

Hydrostatic pressure decreases the lattice 
constants of a material. Since the 
compressibilities of different semiconductors 
vary, there can be pressure induced biaxial strains 
between semiconductors that share a common 
interface. The strain thus generated in a hetero- 
structure can be formulated quantitatively from 
expressions for the change of the respective lattice 
constants. Murnaghan's equation of state4 can be 
written as 

a(P) = a(l bar) B-P+l 
B 

-1 
3B (2) 

where a(P) is the lattice constant as a function of 
pressure, B is the bulk modulus (=(Cj,+2cj2)/3) 
and B' is the pressure derivative of the milk 
modulus. The pressure-induced strain e(P) can be 
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expressed from Eq.(2) for the change in the 
respective lattice constants of the two materials as 
follows1'2: 

e(P) = as(P) - ae(P) 

ae(P) 
e(P) = e(0) + ^ \ P 

ae'L(cn+2c12)e     (cn+2cI2)s 

(3a) 

(3b) 

where P is the applied hydrostatic pressure, and 
the Cjj's are the elastic constants for the epilayer 
(e) and the substrate (s). In Eq. (3b), the initial 
lattice mismatch strain is 8(0) and only a first 
order term in pressure is retained. If the bulk 
modulus of the epilayer is smaller than that of the 
substrate, as is the case in the system under 
consideration (table 1), then the pressure-induced 
stress is biaxially tensile. 

We have measured the pressure dependence of 
the Raman active LO-phonon up to three orders 
for the ZnTe film on InAs and the bulk ZnTe, 
both samples loaded next to each other in the same 
diamond anvil cell. This has enabled us to 
directly measure the pressure dependence of the 
phonon shift Aco of the film with respect to that 
of the bulk. Figure 1 shows the first and second 
order Raman spectra at different pressures for the 
ZnTe film on InAs (dotted lines) and the bulk 
ZnTe (solid lines). At 1 bar, (not shown) the first 
order LO-phonon in the film occurs at ~lcm_1 

higher than that in the bulk. Under the applied 
pressure, the phonon peaks of the film and the 
bulk approach each other and coalesce at -65 
kbars. This is evident from Fig. 1 and also in 
Fig. 2, in which the average separation A CO 
between the LO phonon in the film and the bulk 
ZnTe, is shown. 

The shift Aco of the LO-phonon of a strained 
epilayer film from its bulk counterpart is related 
to the strain components of the film grown along 
the [001] axis by 5 

Aco 
CO 

K n 
tzz 4^fe, + £w)= K M2 -K»S)£ (4) 

Here the K;J denote first-order strain derivatives 
of the LO-phonon of the film material. These are 
related to the mode Grüneisen parameter y, „ 
which is in turn related to the bulk modulus,IB; 
and the pressure derivative of the LO-phonon 
according to 

Kn +2Ki2 = -6yLo 

YLO = 
-   B   dco 

(5a) 

coLO dp" (5b) 

From  an  analysis  of the  data  we  obtain 
yLO = °-99 ± °-04' for the film and the bulk> 

which is in agreement with an „earlier 
measurement.6 We also obtain values for Kn and 
K,2 to be (-2.3±0.3) and (-1.710.3), respectively. 
Using the data from Fig. 2 and Eqs. (4-5), we 
have determined that the strain in the ZnTe film 
as a function of pressure is linear. 

Figure 3 shows the photo-modulated 
reflectivity spectra of the ZnTe film on InAs at 
80K. At 1 bar, two signatures at 2.383 eV and 
2.419 eV correspond to the excitons associated 
with the heavy and light hole valence to 
conduction band transitions. The spectra are 
fitted to the functional form given in ref. 1 to 
yield energy, width, asymmetry, and relative 
intensities of the transitions. The PR signals could 
be observed only up to 62 kbar, a pressure at 
which InAs undergoes a phase transition into the 
rocksalt structure. 

As the applied pressure is increased, the heavy 
and light hole transitions approach each other and 
cross at 55 kbars. Beyond 55 kbars, the character 
of the fundamental gap of the sample changes 
from heavy-hole to light-hole related. 

The data were fit to the functional form 
E (P) = E (0) + a P + ß P2. The linear and quadratic 
pressure coefficients are shown in table 2. From 
the average of the a's from we can compute the 
hydrostatic deformation potential acv for ZnTe7 

to be -5.0 ± 0.2 eV from the equation: 
^avg = — äcv / a. 

The splitting between the heavy and light hole 
transitions, (E£h - E^h), as a function of pressure is 
shown in Fig. 4 noting that8 

rhh 2 5E, + 2 6ES
2 

5ES= -b|c"+2c'2 
Cll 

(6) 

(7) 

From the splitting of the heavy and light hole 
bands, (E|h - Ej,h), at lbar and the lattice mismatch 
strain of -6.61 X 10-3 we find the shear 
deformation potential constant7 b = -1.27 ± 0.05 
eV from Eqs.l, 6, and 7. 

The pressure dependence in Fig. 4 is clearly 
strongly superlinear. The strain induced mixing 
of the light hole band and the spin-orbit split 
band, leads to a nonlinear term in Eq.(6). 
However, due to the large value of A (910 meV at 
3 00K9), it is too small to account for the 
measured superlinearity. Hence (E|h-Ej,h) vs. 
pressure is given by 2 5ES which depends on b, c;; 
and 8(P). J 

The dotted curve in Fig. 4 is due to the strain 
calculated from Eq.3a and the value of b obtained 
from the lbar data.  The agreement is good up to 
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Figure 1: The first and scond order Raman spectra of the LO phonon of the ZnTe film on InAs(dotted line) and of 
bulk ZnTe(solid lines) at different pressures and 13K. 
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Figure 2: The average separation of the LO phonon of the 
film and the bulk ZnTe vs. pressure. 
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Figure 3: The photomodulated reflectivity spectra of ZnTe 
film on InAs vs. pressure in kbars. 
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Figure 4: The separation between the heavy and light hole 
transitions plotted versus pressure. 

Table 1: Physical Constants9 

B(kbar)       B' 
ZnTe       521         4.7 
InAs        613         4.79 

C12/Cll 
0.57 
0.54 

Table 2: Pressure Coefficients 

a(meV/kbar) 
Heavy Hole         8.96±0.20 
Light Hole          9.45±0.20 

ß(meV/kbar2) 
-0.013±0.002 
-0.034±0.003 
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30 kbar; at higher pressures it indicates a slight 
sublinear rather than the observed superlinear 
pressure dependence. By allowing a small 
pressure dependent term b' (= db/dP) for the 
tetragonal deformation potential b, the fit can be 
improved as shown by the solid curve. The 
values obtained from the fit are b = -1.21 eV and 
b' = -0.019 eV/kbar. 

It should be noted here that similar effects 
were observed in the case of a pseudomorphic 
ZnSe film on GaAs. The Raman data3 showed a 
linear pressure dependent strain whereas the PR 
and PL data1'2 gave evidence for a pressure 
dependent tetragonal deformation potential. Both 
the ZnTe/InAs and ZnSe/GaAs systems seem to 
indicate that the electronic bands in the film 
deviate from the linear deformation potential 
theory, whereas the lattice vibrations are in the 
linear regime. 

Both the Raman and PR data clearly show that 
the effect of applied pressure is to cancel the 
initial mismatch strain. The pressure Pm at which 
the cancellation occurs was found to be -55 kbar 
from the PR data at which the splitting of the 
heavy and light hole bands goes to zero. In the 
Raman data the difference in frequency of the 
Raman phonon of the film and that in a separate 
bulk sample was compared. A somewhat higher 
(-65 kbar) value of the observed Pm is probably 
due to the uncertainty in the initial (lbar) 
separation Ad). A decrease of -0.2 cm-1 in this 
value will bring the Pm in agreement with the PR 
data. 

In conclusion, pressure tuning of the biaxial 
strain in ZnTe epilayers pseudomorphically 
grown on InAs is observed by Raman scattering 
and photo-modulated reflectivity studies. Values 
for the deformation potential constants, mode 
Grüneisen parameters and first order strain 
derivatives of the LO phonon are determined. 
The Raman data shows a linear dependence of the 
strain vs. pressure. The PR data indicate that the 
tetragonal deformation potential depends on 
pressure (or volume) in a manner similar to that 
observed in ZnSe epilayers on GaAs. 
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